Course	Course Title	Credit
Code	Course Title	Hours
ENE-845	Environmental Catalysis	3 (3+0)

Course Description

This course will provide students with an introduction to the role of catalysis in abating pollutant emissions and developing future environmentally friendly energy technologies. A review of catalysis fundamentals, including modern preparation and characterization techniques, will be provided.

Course Outline

Catalysis and environment: Examines how catalysts reduce environmental impacts by promoting cleaner processes, minimizing pollutants, and supporting sustainable industrial and chemical practices.

Catalyst Synthesis: Covers methods to create catalysts, emphasizing techniques to control size, surface area, and active site distribution for enhanced catalytic performance.

Characterization of catalyst materials: Discusses techniques like XRD, SEM, and spectroscopy to analyze catalyst structure, composition, and properties, linking these to performance.

Application in green energy production: Explores catalysts in hydrogen production, fuel cells, and biofuels, highlighting their role in enhancing renewable energy processes.

Catalysis in Chemical Industry: Focuses on catalysts in industrial chemical production, improving efficiency, reducing energy use, and minimizing waste.

Application in abatement of pollutants: Details catalyst use in pollution control, including catalytic converters, water purification, and wastewater treatment to reduce environmental contaminants.

Recommended Books

- 1. Nanostructured Catalysts for Environmental Applications by Marco Piumetti, Samir Bensaid (2021)
- 2. Environmental Catalysis and the Corresponding Catalytic Mechanism by Andres Fullana, Hongqi Sun, Zhimin Ao (2019)
- 3. Nanotechnologies for Environmental Remediation (2019), Giusy Lofrano, Giovanni Libralato, Jeanette Brown, ISBN 331953162X